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ABSTRACT
We introduce a 3D morphing method which generates a merged model given a series of triangle meshes. Our
morphing, based on a set of parameters between the source and target shapes, can show the process of the transfor-
mation from the source to the target smoothly. We choose a model as our reference mesh, and obtain corresponding
unified models from other models which may have different number of vertices or facets. Given these unified mod-
els, parameters between any two meshes can be computed integrally or separately for each rigid part. Different
forms of combination of the parameters can generate different merged models. To address the collapsed situation
happened occasionally, shape and pose morphing are separated for some parts in our work. By merging differ-
ent parts of different models, we can get a merged shape, e.g. an animal with the horse head and the cat body.
As an application of our 3D morphing method, quantifying the difference between any two models can be done
efficiently, represented by the distance between any two sets of low-dimensional parameters reduced from the ini-
tial parameters using Principal Component Analysis (PCA). Character replacement and model driven are another
two applications. Characters in two-dimensional images are used to guide our morphing work and depth image
sequence is used to drive our merged model to show the same pose as the character in the sequence respectively.
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1 INTRODUCTION

3D morphing plays an important role in many applica-
tions of computer graphics such as 3D animation and
games. Smooth morphing from one shape to anoth-
er is always one of the most popular special effects in
movies, e.g. sphinx, an animal with a lion body and
a human face. Existing methods for 3D morphing can
be summarized into two categories: volume-based and
mesh-based. Since volume-based method is computa-
tionally expensive compared to mesh-based, much of
work has been done for the latter. First stage of any
morphing algorithm is the establishment of an accu-
rate mapping between the source and the target shape.
Then suitable forms for the morphing are used to get
a merged result. Spherical embedding is a popular
method in this area, but it has an inevitable disadvan-
tage: significant increase of the number of mesh ver-
tices and facets.

In this paper, an efficient 3D morphing method is intro-
duced. In order to get models with point-to-point cor-
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respondences, we use a semi-automatic method which
is a variant of iterated closet point algorithm. With
these unified models, we can compute the transforma-
tion matrices from the source model to the target, us-
ing the method similar to SCAPE [Ang05a]. Given the
transformation and a source model, 3D morphing can
be done smoothly. As the target model accounts for an
increasingly proportion, the model generated gradually
becomes the target from the source. Merging different
parts which belong to different models is also included
in our work, e.g. a shape which consists of a human
body and a cat head. Geodesic distance is used to de-
termine the proportions the two models occupy respec-
tively in order to smooth the conjunction.

Taking the inspiration of SCAPE, we try to analyze the
transformation parameters to get a mathematical mod-
el and quantify the similarity between different shapes.
Euclidean distance of N-Dimensional parameters re-
duced by Principal Component Analysis (PCA) be-
tween any two models represents the shape difference.
The other two applications of our method are charac-
ter replacement in two-dimensional image (Figure 10)
and driving a merged model by a motion sequence (Fig-
ure 13), (demonstrated in our accompanying video).

2 RELATED WORK
A variety of related work has been done in this area
about the morphing of 3D models. Alexa [Ale02a]
summarize the work about mesh morphing before 2003.



Figure 1: 3D morphing from a cat to a horse.

One popular approach in his summary is sphere embed-
ding. By embedding the polyhedron models on a unit
sphere and aligning the features, users can reconstruct
a merged shape. Mocanu et al. [Moc12a] also use the
similar method. Unlike traditional morphing method,
they introduced a technique named pseudo metamesh
construction to avoid significantly increasing the num-
ber of mesh triangles. Kraevoy et al. [Kra04a] propose
another method by constructing a common base do-
main based on his another work, Matchmaker [Kra03a].
Given the common base domains, after initial cross-
parameterization and compatible remeshing, a final new
mesh can be generated by smoothing and refinemen-
t. Assuming the models have point-to-point correspon-
dences, Allen et al. [All03a] do the morphing between
two models by taking linear combination of the ver-
tices. Although our models after processing have this
correspondence, this method does not suit us. Different
human models have similar scale, while different an-
imals may have a huge difference in shape and size.
Point combining directly ignores the difference in s-
cale. In order to solve this problem, we take an inspira-
tion in the work of deformation transfer by Sumner and
Popović [Sum04a]. They use a 3× 3 matrix to repre-
sent the deformation of each source triangle to the cor-
responding target. We use this transformation matrix to
address the task of 3D morphing.

Our initial triangulated models do not have the same
vertices and faces, not to mention the point-to-point
correspondences. Getting the models with the point-to-
point correspondences is just like to warp the template
mesh onto the targets. Kaick et al. [Van11a] review
a series of methods to compute correspondences
between geometric shapes. With a model as the
deformable template and the other models as the
targets, the classical method is an extending Iterative
Closest Points (ICP) algorithm for modeling non-rigid
objects,such as [Hah03a]. However, this method is
not stable and good results are yielded only when the
inter-frame deformations are small. Coherent Point
Drift (CPD) [Myr10a] is another approach to solve the
point set registration. During the process of the point
set registration, the template points drift to the target as
a whole with certain transform form, maintaining the
consistency of topology. Although CPD algorithm has
some advantages, its inherent limitations can not be
avoided, such as local optimum and slow convergence

speed. Allen et al. [All03a] do this work with the
optimization of a penalty function. By adding some
markers on both the source and target meshes manually,
optimizing the combining error of data, smoothness
and marker can get a satisfying result. Based on his
work, Sumner [Sum04a] has made some improvements
by adding an identity error to the objective function to
avoid drastic change in the shape of the model caused
by the smoothness error.

Principal Component Analysis (PCA) has been used
to analyze the features of human shape in Allen’s
work [All03a]. But it is performed over the coordinates
of the template vertices. In the work of SCAPE,
Anguelov [Ang05a] tried to perform PCA over the
transformation matrices between the template shape
and the other models. We use PCA like SCAPE, but
what we want to do is not to generate a new model
using the reduced dimensional parameters. Quantifying
the difference between different models is our purpose.

3 METHOD

One of the main purposes of our approach is to defor-
m the source shape to the target smoothly and anoth-
er is to generate a merged model. By adding sparse
markers on any two models, deformation transfer can
morph one triangulated mesh to another gradually in the
process of an iterated closet point algorithm with regu-
larization. Our model of 3d morphing adopts another
method. Assuming the meshes have point-to-point cor-
respondences, affine transformation matrices between
the paired triangles can be computed like SCAPE. D-
ifferent combinations of the transformation parameters
can build different models. Taken horse and cat as an
example, as the the proportion of cat’s transformation
parameters is increasing, the model generated is more
like a cat.

Our database mainly comes from a CG software called
Poser. SCAPE datasets are also included. Every mod-
el in SCAPE datasets have 12500 vertices and 25000
triangular facets, with point-to-point correspondences.
However, animal models do not have this feature. Dif-
ferent shapes have different vertices and facets. So as to
get the consensus meshes, we take the approach similar
to deformation transfer.



3.1 Definitions
The terms used in our method are defined in the follow-
ing way:

Our datasets consist of a source model S and a set of
targets T = {T 1,. . . ,T N}. The source mesh S = {VS,FS}
has a set of vertices VS = {v1, . . . ,v j} and a set of trian-
gular facets FS = { f1, . . . , fk}.

3.2 Transformation parameters
Assuming our models have correspondence between
each pair of triangular facets, transformation parame-
ters can be computed in the following method:

Let the paired triangular facets fk and f̃k have the ver-
tices vk,1,vk,2,vk,3 and ˜vk,1, ˜vk,2, ˜vk,3. Since we just want
to use a affine transformation defined by a 3×3 matrix
Q, not using a displacement vector d, deformations are
applied in the local coordinate system. We represent the
deformation as Ṽ = Q×V where

V = [v2− v1,v3− v1], Ṽ = [ṽ2− ṽ1, ṽ3− ṽ1] (1)

Since this is not enough to determine the affine trans-
formation matrices, we add a regularization to constrain
the problem following Allen et al. [All03a] and Sumn-
er et al. [Sum04a]. With a smoothness constraint which
indicates the transforms should be similar in adjacent
triangular facets, this problem can be described as the
following form

min
Q1,...,QN

N

∑
k=1

∑
i=2,3
‖QkVk,i− ˜Vk,i‖2+ws

N

∑
k=1

∑
j∈ad j(k)

‖Qk−Q j‖2

(2)
where Vk,i = vk,i− vk,1, i = 2,3, and N is the number of
the triangular facets. This equation can be solved inte-
grally for the entire shape or separately for each rigid
part by using the least squares method.

3.3 Shape morphing
Given the source model and a set of transformation pa-
rameters from the source to the target, 3D morphing
can be achieved smoothly. Without loss of generality,
each triangular facet fk can be represented as two vec-
tors v2,1,v3,1. The generated triangle can be represented
as the following formulation

˜Vk,i = (ωQm
k +(1−ω)Qn

k)Vk,i, i = 2,3 (3)

where Qm and Qn belong to any two different models
and the weight ω is used to guide the morphing between
the two shapes. With the decrement of the proportion
one model occupied, the model generated tends to be
more like the other.

The parameter ω above is a constant, but it can also be
a variable. Rules can be defined by users to guide our
shape merging. Model size and orientation should be

unified firstly. For convenience, we adjust the model
so that their boundary is a unit cube and the orientation
is along the z-axis. And then we can define a func-
tion whose dependent variable is the parameter ω and
independent variable is the distance from the curren-
t facet to a defined plane, denoted by z-axis coordinate
in this case. Several forms have been used to determine
the weight, such as linear, piecewise, exponential and
so on. Some of the results are enumerated in the Fig-
ure 2. The color represent the proportions each model
accounts for.

Figure 2: Several forms have been used to determine
the weight: linear, piecewise, exponential, logarithmic.
Corresponding models generated are below the four
functions.

As stated above, what we have now are a series of tri-
angular facets. Each one is denoted by two vectors,
not three vertices. Generally speaking, the number of
the facets in a model is about twice as the number of
vertices. So as to resolved the vertices, a start vertex
should be defined firstly. And then this problem can be
described as the following form

min
v1,...,vNv

N f

∑
k=1
‖(vk,i− vk,1)−Vk,i‖2, i = 2,3 (4)

where Nv and N f denote the number of the vertices and
facets respectively. This overconstraint problem can al-
so be solved by using the least squares method.
During the process of the morphing, interpenetration
between different parts sometimes occurs. Fig-



ure 3(left) shows a situation where the ear goes into the
head when a dog model transforms to a cat. Since dog
ear is different from cat both in shape and orientation,
merging these two parts may cause distortion if the
proportion distribution is not reasonable. This problem
can be solved by a refinement method introduced in
DRAPE [Gua12a]. A penalty function is defined in the
following form:

p(E) = ∑
vi∈E
‖ε +nv j(vi− v j)‖2 (5)

where E is the set of vertices belonging to ear, v j is the
nearest vertex in the head to vi and nv j is the normal
of the vertex v j. ε is a variable which ensures the ear
vertices lie outside the head. To regularize the solution,
two additional terms are added which named smooth
warping and damping:

s(E) = ∑
vi∈E
‖(vi− ṽi)−

1
|Ni| ∑

j∈Ni

(v j− ṽ j)‖2 (6)

d(E) = ∑
vi∈E
‖vi− ṽi‖2 (7)

where ṽi is the vertices of the ear before transformation
and Ni is the set of vertices adjacent to vi. Then our
object function can be defined as

min
vi∈E

p(E)+ωss(E)+ωdd(E) (8)

This equation can be solved using the least squares
method iteratively. Figure 3 shows the process where
the ear goes out of the head gradually.

Figure 3: From left to right, this figure shows the initial
morphing, the result after the first iteration of optimiza-
tion, and the final result respectively.

The essence of this problem is that ears of dog and horse
are not in the same posture. If we treat the ear as a rigid
part, a rotation matrix R can be computed. By using
this matrix, the dog ear can be rotated to the same ori-
entation as the horse ear. And then shape deformation
matrices Qk can be computed. By this way, pose and
shape morphing can be separated. The generated trian-
gle can be represented as the following formulation:

˜Vk,i = Rotate((ωQm
k +(1−ω)Qn

k)Vk,i,q(ω)), i = 2,3
(9)

where q(ω) is a quaternion used to represent the rota-
tion and Rotate is a function defined to rotate the vector
by the quaternion. The rotation matrix R can be con-
verted to a quaternion qi, and q(ω) is a function of ω ,
interpolated between qi and [1,0,0,0]. Since quater-
nion is suitable for rotation interpolation, q(ω) can be
computed easily by linear interpolation or spherical lin-
ear interpolation. As is illustrated in Figure 4, pose and
shape of the ear are merged separately.

Figure 4: Transforming a dog to a horse while pose and
shape of the ear are merged separately.

3.4 Shape merging
Assuming the unified models have been divided into
several parts, merging different parts which belong to
different models can be done smoothly, e.g. a shape
which consists of a cat head, a horse trunk and four
lion limbs. Using the vertices directly is not suitable
for shape merging since it may cause huge distortion
in the conjunction between different parts while using
facets can solve this problem reasonably. Our method
can merge any number of models, but for convenience
we take the merging of two models for example. Fig-
ure 6 (a) shows a merged shape whose head is from a
horse and other parts are from a cat. To get such a mod-
el, we need to determine firstly which model every part
should belong to. Then conjunction between different
parts should be smoothed. As the new model is gen-
erated by using the least squares method, this problem
has been eased to a certain extent, but what we want is
a smooth model. To address this defect, the mutation
at the conjunction can not be allowed. So we apply a
method to guide this smooth transition. As is shown
in Figure 5 (a), we firstly get the user-defined conjunc-
tion by labeling an area on the surface mesh manually.
Then boundary of this area can be computed easily s-
ince these triangular facets are shared by two different
parts. After that, the Dijkstra algorithm is applied to
compute the geodesic distance from every vertex in the
labeled area to the boundary. Figure 5 (b) shows the re-
sult by labeling gradient colors on the mesh to represent
the distances. A linear function is used to determine
the proportions the two models account for respective-
ly based on the distances from the current facets to the
boundary.

Size deformation is also included in our work. In Fig-
ure 7, the cat with a small head or a big head is shown.



Figure 5: Conjunction smooth method: (a) a horse
mesh and the blue area is selected; (b) black and white
represent body and head respectively, while the gradi-
ent colors represent the geodesic distance from every
vertex in the labeled area to the boundary.

Figure 6: Parts merging: (a) a model consists of a cat
body and a horse head; (b) a model consists of a horse
body and a cat head.

Figure 7: Size deformation: the cat head is 0.5 times
(a) and 2 times (b) of the original size respectively.

3.5 Consensus Correspondence
Our work above is based on the unified models which
have point-to-point correspondences. But the mod-
els we have in hand do not have this characteristic.
So a correspondence system introduced by Allen et
al. [All03a] and perfected by Sumner et al. [Sum04a]
has been taken. It is just like to wrap a source sur-
face onto the target. We choose the horse model as
the source mesh which has N vertices, |T | facets and
the other models as targets. To compute the deformed
vertices ṽ1, . . . , ṽN , a set of affine transformations Ti, i ∈
[1 . . . |T |] are defined to minimize the object function:

E = wSES +wIEI +wCEC +wMEM (10)

where

ES =
|T |

∑
i=1

∑
j∈ad j(i)

‖Ti−Tj‖2 (11)

EI =
|T |

∑
i=1
‖Ti− I‖2

F (12)

EC =
N

∑
i=1
‖vi− ci‖2 (13)

EM =
m

∑
i=1
‖ ˜vsk −mk‖2 (14)

ES is defined to achieve a smooth deformation. This
regularization can ensure the transformations for the ad-
jacent facets to be similar when the source mesh trans-
forms to the target. EI , deformation identity, is defined
to make the transformations similar to a identity ma-
trix. This term can prevent the drastic change in the
mesh caused by the deformation smoothness term. EC
is defined to represent the distance between each ver-
tex in the source and the closest vertex in the target. To
avoid the local minima, a marker error EM is introduced
to guide the deformation. Since corresponding vertices
should be found correctly in EC, we need to make the
two models in a similar shape and position firstly. To
achieve this purpose, sparse markers need to be added
onto the models manually. sk is the index for marker k
on the source mesh and mk is the corresponding marker
on the target mesh.
An iterative approach is used to minimize this energy
function. In the first iteration, we ignore the distance
error between closest vertices by setting the weights
wS = 1,wC = 0,wM = 10. The marker error is the dom-
inant constraint to guide the deformation in this phase.
After this phase, the markers in the source mesh are
transformed to the position of the corresponding mark-
ers in the target mesh. And the other vertices move to
the target mesh restricted by the smoothness error Es.
Then a set of closest vertices can be computed using
this model and the target. In the second phase, the op-
timization problem is solved by increasing the wC from
1 to 50 in four steps preserving wS = 1,wM = 1. After
each step, a new model which is more like the target
will be generated. And we update the closest points for
the deformed source mesh from the target mesh. If the
normals of the two corresponding vertices are less than
90◦ in orientation, this pair is valid.

Figure 8: Differences Quantifying: (a) the distances
from every instance to the horse model assuming each
β have 5 degrees of freedom; (b) the β of seven models
in the three-dimensional space.



Figure 9: Model generated by using reduced N-Dimensional β .

4 APPLICATION
In this section, we will introduce three applications
based on our work above. One is to quantifying the d-
ifferences between different animals, and the second is
to replace a character in a two-dimensional image with
another deformed model. The last one is using a video
sequence to drive a merged model.

4.1 Differences Quantifying
While people can distinguish different animals easily,
it is always difficult for a computer to tell the differ-
ences between different animals. Inspired by the work
of SCAPE, each model can be represented by a column
vector βi. Since we have obtained the transformation
matrices Qi

k for each instance i and triangular facets k,
a simple linear subspace which is used to generate Qi

can be estimated by using PCA:

Qi = ϕU,µ(β
i) =Uβ i +µ (15)

where µ is the mean value of the matrix composed of
Qi and U are the first n eigenvectors computed by using
PCA.

Unlike SCAPE, what we want to do is not to learn
the shape deformation model, but to get a set of low-
dimensional parameters to represent our instances. Giv-
en these low-dimensional parameters, differences be-

tween any two animals can be quantifying. By comput-
ing the Euclidean distance between any two sets of the
N-dimensional parameters, the difference can be denot-
ed as:

Di, j =

√
N

∑
k=1

(β i
k−β

j
k )

2 (16)

where N is the dimension of β . Figure 8 (a) shows the
distances from every instance to the horse model as-
suming each β have 5 degrees of freedom while (b) is
a graph which draw the β of seven models in the three-
dimensional space. And these animals can be divided
into four groups intuitively:

1. horse and camel

2. cat, lion and wolf

3. dog

4. bear

Figure 9 enumerates 7× 7 models and each row is re-
constructed by using the reduced N-Dimensional β .
With the dimension of β continues to reduce, the de-
tails of the models generated are lessened gradually. It
is clearly that bear undergoes dramatic changes when
the dimension of β is reduced to two.



Figure 10: Character replacement: (a) an image of venus; (b) a corresponding model; (c) a merged model by
replacing the human head with a cat head; (d) transfer texture of the image to the merged model and then project
the model to the image.

Figure 11: Morphing from a human head to a cat head.

4.2 Character Replacement
Character replacement is another application of our
work. Assuming there is a human in a two-dimensional
image and we want to replace it with another character
which is composed of a human body and a cat head,
what we need to do is to project such a model on-
to the image. Firstly, we need to get a model whose
pose and shape are the same as the character in the im-
age. Pose estimation can be done accurately by locat-
ing the projections of joints of the model on the im-
age [Tay00a] [Hor07a] [Gua09a]. We use the method
similar to Taylar: by labeling a series of markers on the
image, the positions of which are the joints of the corre-
sponding 3D model, the pose can be obtained by using
the scaled orthographic projection method assuming the
size of every rigid part is known. Shape estimation is
relatively difficult and since this is not our focus, we do
not pay much attention to this phase. The shape of the
model is adjusted manually.
Then our 3D morphing method can be used to get a
merged shape. Figure 10 shows the result: a shape
composed of a human body and a cat head. The hu-
man model comes from Poser. The trunk and limbs are
completely from the human model, while the head is
completely from the cat. The process of morphing is
shown in Figure 11.

4.3 Model Driven
In this section, we try to drive our merged model to
move according to a video sequence. The sequence is
composed of a series of depth images obtained from
Kinect. Since SCAPE is our basic work, a approx-
imate model can be obtained from the work of shape

Figure 12: Point cloud (a) from a depth image and the
corresponding complete mesh (b) from SCAPE.

Figure 13: Transfer deformation of a SCAPE model (a)
to our merged model (b).

completion [Ang05a]. The only difference is that we
use CPD algorithm to find correspondences between
incomplete meshes and SCAPE models while shape
completion has a set of markers between the two mesh-
es. Since the incomplete meshes collected from Kinect
are not very accurate, sometimes the results from shape
completion converge to a local optimum. So after shape
completion, we examine if the result is correct or not



by computing the distance between the two meshes. If
the distance is over a threshold, we think this method
collapse. And then we use an approach introduced
by Wei et al. [Wei12a]. By combining pose tracking
and pose detection, an more accurate model can be ob-
tained. Figure 12 shows a set of point cloud (a) from
depth image and a generated model (b) corresponding
to the point cloud.
Since all our models have point-to-point correspon-
dences, it is quite easy to do the work of deformation
transfer without any modification. Figure 13 shows the
result of our work.

5 CONCLUSION
In this paper, we have introduced a method to do the
3D morphing for any number of unified models by us-
ing the transformation parameters between them. Rules
for this morphing can be defined by users regardless y-
ou want to merge the models integrally or separately.
Differences quantifying and character replacement are
two major applications of our work. Compared to the
work of Kraevoy et al. [Kra04a], one significant supe-
riority of ours is that we can use a video sequence to
drive the merged model to be in the same pose. Since
our method is based on the unified models, deformation
transfer can be done without any modification.
Unified models should be obtained firstly before the 3D
morphing. This is a difficult task in our work. Since
different models may differ from each other greatly in
some parts, it is hard to warp the source mesh onto the
target perfectly. To address this problem, we have tried
some methods. One is to add the number of vertices
and facets by interpolation and this indeed plays a role
to a certain extent. Another is to label more markers on
the surface mesh but this is not a good choice. Fortu-
nately, when we do the morphing only for several parts,
not integrally, we do not need to warp the whole source
onto the target, but only the parts we want to merge.
For example, if the model generated is composed of a
human body and a cat head, we need only to warp the
human head onto the cat head and not to care the body.
During the process of the morphing, interpenetration
occasionally occurs between different parts. Although
this problem can be addressed by the method intro-
duced in DRAPE, it still needs users to find the inter-
penetrating area manually. To address this problem fun-
damentally, we introduce a method to separate the pose
and shape morphing. Since the models we have in hand
are nearly in the same pose, this situation only occurs
in special parts of the body, e.g. the dog and horse ears.
Another limitation of our work is that the models for
the morphing should have the similar orientations, and
their size can not differ too much from each other. Ori-
entation is defined as the direction from the tail to the
head and size is normalized. The models should be ad-
justed according to this rule before the morphing.
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